Question 10. Two particles A_1 and A_2 of masses m_1 , m_2 ($m_1 > m_2$) have the same de-Broglie wavelength. Then,

- (a) their momenta are the same (b) their energies are the same
- (c) energy of A_1 is less than the energy of A_2
- (d) energy of $\ensuremath{\mathsf{A}}_1$ is more than the energy of $\ensuremath{\mathsf{A}}_2$

Ans-(a),(c)

We know that de-Broglie wavelength $\lambda = \frac{h}{mv}$

where, mv = p (momentum) of the particle

 \Rightarrow But we can express wavelength $\lambda = \frac{h}{p} \Rightarrow p = \frac{h}{\lambda}$ Here. h is Planck constant.

Hence,
$$p \propto \frac{1}{\lambda} \Rightarrow \frac{p_1}{p_2} = \frac{\lambda_2}{\lambda_1}$$

But particles have the same de-Broglie wavelength. ($\lambda_1 = \lambda_2$) = λ .

Then.
$$\frac{p_1}{p_2} = \frac{\lambda}{\lambda} = 1 \Rightarrow p_1 = p_2$$

Thus, their momenta is same.

Thus, their momenta is same.

Also,
$$E = \frac{1}{2}mv^2 = \frac{1}{2}mv^2 \frac{m}{m}$$

$$= \frac{1}{2}\frac{m^2v^2}{m} = \frac{1}{2}\frac{p^2}{m}$$
is p is constant, $E \propto \frac{1}{m}$

As p is constant, $E \propto \frac{1}{m}$

$$\therefore \frac{E_1}{E_2} = \frac{m_2}{m_1} < 1 \Rightarrow E_1 < E_2$$